Solve for n, (12+ι32)3+(12ι32)2n=2 ?

2 Answers
Mar 12, 2017

n=3m4, where m is an integer

Explanation:

We have to evaluate (12+i32)3+(12i32)2n

As (12+i32)=cos(2π3)+isin(2π3) and

(12i32)=cos(4π3)+isin(4π3)

using De Moivre's Theorem

(12+i32)3=cos(2π3×3)+isin(2π3×3)

= cos(2π)+isin(2π)=1

and (12i32)2n=cos(4π3×2n)+isin(4π3×2n)

= cos(8nπ3)+isin(8nπ3)

Therefore (12+i32)3+(12i32)2n=2

cos(8nπ3)+isin(8nπ3)=1=cos(2mπ)+isin(2mπ),

where m is an integer

i.e. 8nπ3=2mπ or m=4n3

and n=3m4, where m is an integer

Mar 12, 2017

n=32k with k=1,2,3,

Explanation:

(12+ι32)3+(12ι32)2n=2

We will using the complex number exponential representation

x+iy=ρeiϕ where ρ=x2+y2 and ϕ=arctan(yx)

So ρ= (12)2+(32)2=1 and ϕ=arctan(3)=π3

then we have

ei3ϕ+ei2nϕ=2

or

ei3ϕ+ei3ϕ(2n3)=2

but ei3ϕ=1 and ei3ϕ=1 so with 2n3=k,k=1,2,3,

1+1k=2

then

n=32k with k=1,2,3,