Show that the derivative of (sinx)/(1 - cosx) is -cscx?

2 Answers
Mar 12, 2017

d/(dx)(sinx/(1-cosx))=-cscxcotx-csc^2x

and not -cscx

Explanation:

sinx/(1-cosx)

= (sinx(1+cosx))/((1-cosx)(1+cosx))

= (sinx(1+cosx))/(1-cos^2x)

= (sinx(1+cosx))/sin^2x

= (1+cosx)/sinx

= cscx+cotx

As such d/(dx)(sinx/(1-cosx))

= d/(dx)(cscx+cotx)

= d/(dx)cscx+d/(dx)cotx

= -cscxcotx-csc^2x

Mar 12, 2017

We can't, because it's false...


Let's use the product rule.

d/(dx)[(sinx)/(1-cosx)]

= sinx * -1/(1-cosx)^2 * -(-sinx) + 1/(1-cosx) * cosx

= -(sin^2x)/(1-cosx)^2 + cosx/(1-cosx)

= -(sin^2x)/(1-cosx)^2 + (cosx(1-cosx))/(1-cosx)^2

= -(sin^2x)/(1-cosx)^2 + (cosx - cos^2x)/(1-cosx)^2

= (cosx - cos^2x - sin^2x)/(1-cosx)^2

= (cosx - (cos^2x + sin^2x))/(1-cosx)^2

= (cosx - 1)/(1-cosx)^2

= -cancel(1 - cosx)/(1-cosx)^cancel(2)

= -1/(1-cosx)

But we know that -1/sinx = -cscx. Therefore, we claim that

-1/(1-cosx) = -1/sinx

Therefore:

sinx/(1-cosx) = 1

sinx = 1 - cosx

sinx + cosx ne 1

Clearly, we have found that this identity is false. More definitively, we can plot this equation to get:

sinx + cosx:

graph{sinx + cosx [-10, 10, -5, 5]}

As this equation is not a straight horizontal line, it cannot be equal to 1 for all x in RR.