How do you factor #x^2-y^2-8x+16# ?
1 Answer
Feb 7, 2017
Explanation:
The difference of squares identity can be written:
#a^2-b^2=(a-b)(a+b)#
We can use this with
#x^2-y^2-8x+16 = (x^2-8x+16)-y^2#
#color(white)(x^2-y^2-8x+16) = (x-4)^2-y^2#
#color(white)(x^2-y^2-8x+16) = ((x-4)-y)((x-4)+y)#
#color(white)(x^2-y^2-8x+16) = (x-y-4)(x+y-4)#