Find the value of cos(tan^(-1)(2)+tan^(-1)(3))?

2 Answers
Feb 5, 2017

cos(tan^-1(2)+tan^-1(3))=-1/sqrt2

Explanation:

First use the cosine angle-addition formula:

cos(a+b)=cos(a)cos(b)-sin(a)sin(b)

Then the original expression equals:

=cos(tan^-1(2))cos(tan^-1(3))-sin(tan^-1(2))sin(tan^-1(3))

Note that if theta=tan^-1(2), then tan(theta)=2. That is, a right triangle with angle theta has tan(theta)=2, which is the triangle with the leg opposite theta being 2 and the leg adjacent to theta being 1. The Pythagorean theorem tells us that the hypotenuse of this triangle is sqrt5.

So, when theta=tan^-1(2), we see that:

cos(tan^-1(2))=cos(theta)="adjacent"/"hypotenuse"=1/sqrt5

sin(tan^-1(2))=sin(theta)="opposite"/"hypotenuse"=2/sqrt5

Now let angle phi be defined by phi=tan^-1(3), such that tan(phi)=3. This is the right triangle with:

{("opposite"=3),("adjacent"=1),("hypotenuse"=sqrt10):}

Then:

cos(tan^-1(3))=cos(phi)="adjacent"/"hypotenuse"=1/sqrt10

sin(tan^-1(3))=sin(phi)="opposite"/"hypotenuse"=3/sqrt10

Plugging these into the expression from earlier we get:

=1/sqrt5(1/sqrt10)-2/sqrt5(3/sqrt10)

Note that sqrt5(sqrt10)=sqrt50=5sqrt2:

=(1-6)/(5sqrt2)=-1/sqrt2

Feb 7, 2017

cos(tan^(-1)(2)+tan^(-1)(3))=-1/sqrt2

Explanation:

Let tan^(-1)(2)=alpha and tan^(-1)(3)=beta

Therefore tanalpha=2 and tanbeta=3

As tan(pi/4)=1, alpha and beta lie between pi/4 and pi/2

and hence (alpha+beta) lies in Q2.

and tan(alpha+beta)=(tanalpha+tanbeta)/((1-tanalphatanbeta)

= (2+3)/(1-2xx3)=5/(-5)=-1 and (alpha+beta)=(3pi)/4

Hence, cos(tan^(-1)(2)+tan^(-1)(3))=cos((3pi)/4)=-1/sqrt2