If f(x) = ln|secx + tanx|, what is f'(x)?

1 Answer
Feb 19, 2017

d/dxln|secx + tanx| = secx

Explanation:

Start by rewriting secx and tanx in terms of sine and cosine. Call ln|secx + tanx|, f(x)#.

f(x) = ln|secx + tanx|

f(x) = ln|1/cosx + sinx/cosx|

f(x) = ln|(1 + sinx)/cosx|

Now use the rule ln(a/b) = lna - lnb to simplify further.

f(x) = ln(1 + sinx) - ln(cosx)

You can differentiate this using the chain rule on each term. I'll show you how to do one. Let y = lnu and u = 1+ sinx. Then dy/(du) = 1/u and (du)/dx = cosx. If dy/dx = dy/(du) * (du)/dx, then dy/dx = 1/u * cosx = cosx/(1 + sinx).

f'(x) = cosx/(1 + sinx) - (-sinx/cosx)

f'(x) = cosx/(1 + sinx) + sinx/cosx

This can be simplified.

f'(x) = (cosx(cosx))/(cosx(1 + sinx)) + (sinx(1 + sinx))/(cosx(1 +sinx))

f'(x) = (cos^2x + sinx + sin^2x)/(cosx(1 + sinx))

Apply sin^2x + cos^2x = 1.

f'(x) = (1 + sinx)/(cosx(1 + sinx))

f'(x) = 1/cosx

Apply secx = 1/cosx.

f'(x) = secx

Hopefully this helps!