How do you simplify ((m^2)^2z^3zd)/(mz^5d^3)?

1 Answer
Feb 1, 2017

(m^3)/(zd^2)

Explanation:

Simplify ((m^2)^2z^3zd)/(mz^5d^3).

First apply power rule (b^m)^n=b^(m*n).

(m^((2*2))z^3zd)/(mz^5d^3)

(m^4z^3zd)/(mz^5d^3)

Apply product rule a^ma^n=a^((m+n)).
(Reminder: b=b^1).

(m^4z^3z^1d)/(mz^5d^3)

(m^4z^((3+1))d)/(mz^5d^3)

Simplify.

(m^4z^4d)/(mz^5d^3)

Apply quotient rule a^m/a^n=a^((m-n)).

m^((4-1))z^((4-5))d^((1-3))

Simplify.

m^3z^(-1)d^(-2)

Apply negative exponent rule a^(-m)=1/a^m.

(m^3)/(zd^2)