How do you simplify ((m^2)^2z^3zd)/(mz^5d^3)(m2)2z3zdmz5d3?

1 Answer
Feb 1, 2017

(m^3)/(zd^2)m3zd2

Explanation:

Simplify ((m^2)^2z^3zd)/(mz^5d^3)(m2)2z3zdmz5d3.

First apply power rule (b^m)^n=b^(m*n)(bm)n=bmn.

(m^((2*2))z^3zd)/(mz^5d^3)m(22)z3zdmz5d3

(m^4z^3zd)/(mz^5d^3)m4z3zdmz5d3

Apply product rule a^ma^n=a^((m+n)).aman=a(m+n).
(Reminder: b=b^1b=b1).

(m^4z^3z^1d)/(mz^5d^3)m4z3z1dmz5d3

(m^4z^((3+1))d)/(mz^5d^3)m4z(3+1)dmz5d3

Simplify.

(m^4z^4d)/(mz^5d^3)m4z4dmz5d3

Apply quotient rule a^m/a^n=a^((m-n))aman=a(mn).

m^((4-1))z^((4-5))d^((1-3))m(41)z(45)d(13)

Simplify.

m^3z^(-1)d^(-2)m3z1d2

Apply negative exponent rule a^(-m)=1/a^mam=1am.

(m^3)/(zd^2)m3zd2