Since tan alpha =o/a =20/21tanα=oa=2021 using pythagorean theorem we have
c^2=20^2+21^2c2=202+212
c=sqrt(20^2+21^2)=sqrt841=29c=√202+212=√841=29 Therefore, cos alpha = 21/29cosα=2129 and sin alpha = 20/29sinα=2029
We also need to half 180^@< alpha < 270^@180∘<α<270∘ hence,
180/2^@< alpha/2 < 270^@/21802∘<α2<270∘2
90^@ < alpha/2 < 135^@90∘<α2<135∘--> Quadrant II
sin (alpha/2) = sqrt(1/2(1-cosalpha))=sqrt(1/2(1-21/29)sin(α2)=√12(1−cosα)=√12(1−2129) = sqrt(1/2((29-21)/29)) =sqrt(1/2(8/29))=sqrt(4/29) = 2/sqrt29 :. = (2sqrt29)/29
cos (alpha /2)= -sqrt(1/2(1+cosalpha))=-sqrt(1/2(1+21/29))= - sqrt(1/2((29+21)/29) ) = -sqrt(1/2(50/29) )= -sqrt(25/29) = -5/sqrt29 :. = (-5sqrt29)/29
tan (alpha / 2) = sin(alpha/2)/cos(alpha/2) = (2/sqrt29)/(-5/sqrt29) = 2/sqrt29 * sqrt29 / -5
= 2/cancel sqrt29 * cancel sqrt29 / -5 :. = -2/5