Making #b=k_1a# and #c=k_2 a# we have
#a/b=1/k_1#, #b/c=k_1/k_2# and #c/a=k_2#
then
#a+k_1a+k_2a=4sqrt3# and
#a^2+k_1^2a^2+k_2^2a^2=16#
solving
#{(1+k_1+k_2=4sqrt3/a),(1+k_1^2+k_2^2=16/a^2):}#
and considering only positive values for #k_1,k_2# we obtain
#k_1 = (4 sqrt[3] a - a^2 + sqrt[a^2 (8 sqrt[3] a - 3 a^2-16)])/(
2 a^2)#
#k_2 = (4 sqrt[3] a - a^2 - sqrt[a^2 (8 sqrt[3] a - 3 a^2-16)])/(
2 a^2)#
Analyzing the discriminant
#sqrt[a^2 (8 sqrt[3] a - 3 a^2-16)]# and choosing #a# such that
#8 sqrt[3] a - 3 a^2-16 ge 0# to avoid complex solutions, we conclude that the only solution is for #a=4/sqrt(3)# (a double root) so making #a = 4/sqrt(3)# we obtain
#k_1=1# and #k_2=1# so
#a/b=1, b/c=1,c/a=1#
and #a=b=c=4/sqrt(3)#