LHS=sin (pi/9) sin ((2pi)/9 )sin ((3pi)/9 )sin ((4pi)/9)
=sin (pi/9) sin ((2pi)/9 )sin (pi/3 )sin ((4pi)/9)
=sqrt3/2sin (pi/9) sin ((2pi)/9 )sin ((4pi)/9)
=sqrt3/4(2sin (pi/9) sin ((4pi)/9 ))sin ((2pi)/9)
=sqrt3/4(cos ((4pi-pi)/9) -cos ((4pi+pi)/9 ))sin ((2pi)/9)
=sqrt3/4(cos (pi/3) -cos ((5pi)/9 ))sin ((2pi)/9)
=sqrt3/4(1/2 -cos ((5pi)/9 ))sin ((2pi)/9)
=sqrt3/8(sin((2pi)/9) -2cos ((5pi)/9 )sin ((2pi)/9) )
=sqrt3/8(sin((2pi)/9)-(sin((7pi)/9) -sin((3pi)/9 ))
=sqrt3/8(sin((2pi)/9)-(sin(pi-(2pi)/9) -sin(pi/3 ))
=sqrt3/8(cancelsin((2pi)/9)-cancelsin((2pi)/9) +sqrt3/2)
=3/16=RHS
Proved