Question #d87b9 Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer P dilip_k Dec 18, 2016 LHS=cos2(π8)+cos2(3π8)+cos2(5π8)+cos2(7π8) =cos2(π8)+cos2(π2−π8)+cos2(5π8)+cos2(3π2−5π8) =cos2(π8)+(−sin(π8))2+cos2(5π8)+sin2(5π8) =cos2(π8)+sin2(π8)+cos2(5π8)+sin2(5π8) =1+1=2=RHS Proved Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140∘? How do you find the value of cot300∘? What is the value of sin−45∘? How do you find the trigonometric functions of values that are greater than 360∘? How do you use the reference angles to find sin210cos330−tan135? How do you know if sin30=sin150? How do you show that (cosθ)(secθ)=1 if θ=π4? See all questions in Trigonometric Functions of Any Angle Impact of this question 4992 views around the world You can reuse this answer Creative Commons License