Question #d07cf Trigonometry Right Triangles Trigonometric Functions of Any Angle 2 Answers P dilip_k Dec 11, 2016 sin(-pi/12) =-sin(pi/12) =-sqrt(1/2(1-cos((2xxpi)/12) =-sqrt(1/2(1-cos(pi/6) =-sqrt(1/2(1-sqrt3/2) =-sqrt(1/8(4-2sqrt3) =-sqrt(1/8((sqrt3)^2+1^2-2sqrt3xx1) =-sqrt(1/8((sqrt3-1)^2) =-1/(2sqrt2)(sqrt3-1) Answer link Bdub Dec 12, 2016 (sqrt2-sqrt6)/4 Explanation: sin(-pi/12) =sin(pi/6-pi/4) Now use the formula sin(A-B) =sin A cos B-cos A sin B to evaluate sin(pi/6-pi/4). That is, sin(pi/6-pi/4)=sin (pi/6) cos (pi/4) - cos (pi/6) sin (pi/4) =1/2*sqrt2/2 - sqrt3/2*sqrt2/2 =sqrt2/4-sqrt6/4 :=(sqrt2-sqrt6)/4 Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for 140^\circ? How do you find the value of cot 300^@? What is the value of sin -45^@? How do you find the trigonometric functions of values that are greater than 360^@? How do you use the reference angles to find sin210cos330-tan 135? How do you know if sin 30 = sin 150? How do you show that (costheta)(sectheta) = 1 if theta=pi/4? See all questions in Trigonometric Functions of Any Angle Impact of this question 1571 views around the world You can reuse this answer Creative Commons License