Question #d07cf

2 Answers
Dec 11, 2016

sin(-pi/12)

=-sin(pi/12)

=-sqrt(1/2(1-cos((2xxpi)/12)

=-sqrt(1/2(1-cos(pi/6)

=-sqrt(1/2(1-sqrt3/2)

=-sqrt(1/8(4-2sqrt3)

=-sqrt(1/8((sqrt3)^2+1^2-2sqrt3xx1)

=-sqrt(1/8((sqrt3-1)^2)

=-1/(2sqrt2)(sqrt3-1)

Dec 12, 2016

(sqrt2-sqrt6)/4

Explanation:

sin(-pi/12) =sin(pi/6-pi/4)

Now use the formula sin(A-B) =sin A cos B-cos A sin B to evaluate sin(pi/6-pi/4). That is,

sin(pi/6-pi/4)=sin (pi/6) cos (pi/4) - cos (pi/6) sin (pi/4)

=1/2*sqrt2/2 - sqrt3/2*sqrt2/2

=sqrt2/4-sqrt6/4

:=(sqrt2-sqrt6)/4