How is #"CO"_2# nonpolar?

1 Answer
Aug 14, 2017

By symmetry.


Polarity is a vector concept, i.e. a bond is polar because the electric dipole moment #vecmu# points in a given direction (#x,y,z#) with a given magnitude #|vecmu|#, i.e.

#vecmu = << mu_x, mu_y, mu_z >>#

As vectors of identical magnitudes in exactly opposite directions add to cancel out completely, a "perfectly symmetrical" compound must be nonpolar, so that

#sum_i vecmu_i = 0#

For #"CO"_2#, we would have...

http://www.ochempal.org/

So, what do we mean by "perfectly symmetrical"? We mean the parent geometries of each so-called VSEPR structure, i.e. the ones with no lone pairs of electrons:

  • two-atom linear, e.g. #"N"_2#
  • three-atom linear, e.g. #"CO"_2#
  • trigonal planar, e.g. #"BF"_3#
  • tetrahedral, e.g. #"CCl"_4#
  • trigonal bipyramidal, e.g. #"PF"_5#
  • octahedral, e.g. #"SF"_6#
  • etc.

all of which were NONPOLAR as listed above.

https://figures.boundless-cdn.com/

The following, more usual examples, are POLAR:

  • #"NO"^(+)#, i.e. #:"N"-=stackrel((+))("O": )#, two-atom linear
  • #"N"_2"O"#, i.e. #:stackrel((-))ddot"N"=stackrel((+))"N"=ddot"O":#, three-atom linear
  • #"AlF"_2"Cl"#, trigonal planar
  • #"CH"_3"Cl"#, tetrahedral
  • #"PF"_3"Cl"_2#, trigonal bipyramidal
  • #"SF"_5"Cl"#, octahedral