Question #c71ad

1 Answer
Dec 4, 2016

sf(P=2.84xx10^(7)color(white)(x)"N/m"^2)

Explanation:

The graphic shows the effective collision cross section, or area:

hyperphysics.phy-astr.gsu.edu

From this we can estimate the diameter of the atoms:

sf(A=pid^2)

:.sf(d=sqrt(A/pi)=0.36/3.142==0.3385color(white)(x)nm)

The mean free path sf(lambda) is the average distance between collisions.

The expression is:

sf(lambda=(1)/(sqrt(2)pid^(2)n_v)

sf(n_v) is the number of molecules per unit volume.

We can eliminate this using the Ideal Gas Expression:

sf(PV=nRT)

sf(n_v=(nN_A)/V)

Where sf(N_A) is the Avogadro Constant.

Since sf(V=(nRT)/P)

We can write:

sf(n_v=(cancel(n)N_A)/((cancel(n)RT)/P)=(N_AP)/(RT))

Substituting this into the expression for sf(lambdarArr)

sf(lambda=(RT)/(sqrt(2)pid^2N_AP))

:.sf(P=(RT)/(lambdasqrt(2)d^2N_A))

We can now set the condition that sf(lambda=d)

:.sf(P=(RT)/(sqrt(2)pid^3N_A))

Putting in the numbers:

sf(P=(8.31xx298)/(1.414xx3.142xx(0.3385xx10^(-9))^3xx6.02xx10^(23))color(white)(x)"N/m"^2)

sf(P=2.837xx10^7color(white)(x)"N/m"^2)