Question #3a2df

1 Answer
Dec 4, 2016

Please see the explanation.

Explanation:

Given: cos(x)=32

Use the identity sin(x)=±1cos2(x):

Because we are given that tan(x) is a positive number, we shall drop the ±, thereby, making the sine positive, only:

sin(x)= 1(32)2

sin(x)=4434

sin(x)=12

Verify that tan(x)=33:

sin(x)cos(x)=1232=13=33=tan(x)

Verified.

Use the identity cot(x)=1tan(x):

= 1/(sqrt(3)/3)#

cot(x)=3

Use the identity csc(x)=1sin(x)

csc(x)=112

csc(x)=2

Use the identity sec(x)=1cos(x)

sec(x)=132

sec(x)=23

sec(x)=233