We have that:
d/(dx) cosx = -sinxddxcosx=−sinx
d^2/(dx^2) cosx = d/(dx) (-sinx) = -cosxd2dx2cosx=ddx(−sinx)=−cosx
d^3/(dx^3) cosx = d/(dx) (-cosx) = sinxd3dx3cosx=ddx(−cosx)=sinx
d^4/(dx^4) cosx = d/(dx) (sinx) = cosxd4dx4cosx=ddx(sinx)=cosx
And obviously after the fifth order they start repeating.
We can however find a synthetic expression valid for all orders noting that:
cos(x+pi/2) =cosxcos(pi/2)- sinxsin(pi/2) = -sinxcos(x+π2)=cosxcos(π2)−sinxsin(π2)=−sinx
cos(x+pi) =cosxcos(pi)- sinxsin(pi) = -cosxcos(x+π)=cosxcos(π)−sinxsin(π)=−cosx
cos(x+3/2pi) =cosxcos(3/2pi)- sinxsin(3/2pi) = sinxcos(x+32π)=cosxcos(32π)−sinxsin(32π)=sinx
cos(x+2pi) =cosxcos(x+2π)=cosx
So that:
d^n/(dx^n) cosx = cos(x+(npi)/2)dndxncosx=cos(x+nπ2)