Question #3ebdb

1 Answer
Jan 9, 2017

d^n/(dx^n) cosx = cos(x+(npi)/2)dndxncosx=cos(x+nπ2)

Explanation:

We have that:

d/(dx) cosx = -sinxddxcosx=sinx

d^2/(dx^2) cosx = d/(dx) (-sinx) = -cosxd2dx2cosx=ddx(sinx)=cosx

d^3/(dx^3) cosx = d/(dx) (-cosx) = sinxd3dx3cosx=ddx(cosx)=sinx

d^4/(dx^4) cosx = d/(dx) (sinx) = cosxd4dx4cosx=ddx(sinx)=cosx

And obviously after the fifth order they start repeating.

We can however find a synthetic expression valid for all orders noting that:

cos(x+pi/2) =cosxcos(pi/2)- sinxsin(pi/2) = -sinxcos(x+π2)=cosxcos(π2)sinxsin(π2)=sinx

cos(x+pi) =cosxcos(pi)- sinxsin(pi) = -cosxcos(x+π)=cosxcos(π)sinxsin(π)=cosx

cos(x+3/2pi) =cosxcos(3/2pi)- sinxsin(3/2pi) = sinxcos(x+32π)=cosxcos(32π)sinxsin(32π)=sinx

cos(x+2pi) =cosxcos(x+2π)=cosx

So that:

d^n/(dx^n) cosx = cos(x+(npi)/2)dndxncosx=cos(x+nπ2)