How do you show that cosx/(1 - sinx) = secx+ tanx?

1 Answer
Dec 4, 2016

We know that sectheta = 1/costheta and tantheta= sintheta/costheta.

cosx/(1 - sinx) = 1/cosx + sinx/cosx

cosx/(1- sinx) = (1 + sinx)/cosx

Multiply the left side by the conjugate of the denominator. The conjugate of a + b is a- b, for example.

cosx/(1 - sinx) xx (1 + sinx)/(1 + sinx) = (1 + sinx)/cosx

(cosx + cosxsinx)/(1 - sin^2x) = (1 + sinx)/cosx

Use the identity sin^2theta + cos^2theta= 1-> cos^2theta = 1- sin^2theta.

(cosx(1 + sinx))/cos^2x = (1 + sinx)/cosx

(1 + sinx)/cosx = (1 + sinx)/cosx

LHS = RHS

Identity Proved!

Hopefully this helps!