How do you show that cosx/(1 - sinx) = secx+ tanx?
1 Answer
Dec 4, 2016
We know that
cosx/(1 - sinx) = 1/cosx + sinx/cosx
cosx/(1- sinx) = (1 + sinx)/cosx
Multiply the left side by the conjugate of the denominator. The conjugate of
cosx/(1 - sinx) xx (1 + sinx)/(1 + sinx) = (1 + sinx)/cosx
(cosx + cosxsinx)/(1 - sin^2x) = (1 + sinx)/cosx
Use the identity
(cosx(1 + sinx))/cos^2x = (1 + sinx)/cosx
(1 + sinx)/cosx = (1 + sinx)/cosx
LHS = RHS
Identity Proved!
Hopefully this helps!