Question #89196

1 Answer
Nov 24, 2016

z_1= 2e^((3pi)/2i)z1=2e3π2i
z_2 =8e^((4pi)/3i)z2=8e4π3i
z_1z_2 = 16e^((5pi)/6i)z1z2=16e5π6i
z_1/z_2=1/4e^(pi/6i)z1z2=14eπ6i

Explanation:

Using Euler's formula e^(itheta) = cos(theta)+isin(theta)eiθ=cos(θ)+isin(θ).

z_1 = -2iz1=2i

= 2(-i)=2(i)
= 2(cos((3pi)/2)+isin((3pi)/2))=2(cos(3π2)+isin(3π2))
= 2e^((3pi)/2i)=2e3π2i

z_2 = -4-4sqrt(3)iz2=443i

= 8(-1/2-sqrt(3)/2i)=8(1232i)
= 8(cos((4pi)/3)+isin((4pi)/3))=8(cos(4π3)+isin(4π3))
=8e^((4pi)/3i)=8e4π3i

Next, using that e^xe^y = e^(xy)exey=exy and e^x/e^y = e^(x-y)exey=exy, we have

z_1z_2 = 2e^((3pi)/2i)*8e^((4pi)/3i) = 16e^((3/2+4/3)pii)=16e^((17pi)/6i) = 16e^((5pi)/6i)z1z2=2e3π2i8e4π3i=16e(32+43)πi=16e17π6i=16e5π6i

where the last step uses e^(itheta) = e^(i(theta+2pin)), n in ZZ

and

z_1/z_2 = (2e^((3pi)/2i))/(8e^((4pi)/3i)) = 1/4e^((3/2-4/3)pii)=1/4e^(pi/6i)