How do you rewrite sqrt(3)sin theta + costheta as a sum?

2 Answers
Nov 23, 2016

We know that sin^2theta + cos^2theta = 1. Isolating cos^2theta, we have:

cos^2theta = 1 - sin^2theta

costheta = sqrt(1 - sin^2theta)

=>sqrt(3)sin theta + sqrt(1 - sin^2theta)

Hopefully this helps!

Nov 23, 2016

Given expression

=sqrt3sintheta+costheta

=>2(sqrt3/2sintheta+1/2costheta)

=>2(cos(pi/6)sintheta+sin(pi/6)costheta)

=>2(sinthetacos(pi/6)+costhetasin(pi/6))

=>2sin(theta+pi/6)
(applying formula sinAcosB+cosAsinB=sin(A+B)