How do you simplify 2/(sqrt(1+sqrt(2))-1) ?
1 Answer
Nov 20, 2016
Explanation:
The difference of squares identity can be written:
a^2-b^2 = (a-b)(a+b)
We find:
2/(sqrt(1+sqrt(2))-1) = (2(sqrt(1+sqrt(2))+1))/((sqrt(1+sqrt(2))-1)(sqrt(1+sqrt(2))+1))
color(white)(2/(sqrt(1+sqrt(2))-1)) = (2sqrt(1+sqrt(2))+2)/((color(red)(cancel(color(black)(1)))+sqrt(2))-color(red)(cancel(color(black)(1))))
color(white)(2/(sqrt(1+sqrt(2))-1)) = (2sqrt(1+sqrt(2))+2)/(sqrt(2))
color(white)(2/(sqrt(1+sqrt(2))-1)) = sqrt(2)sqrt(1+sqrt(2))+sqrt(2)
color(white)(2/(sqrt(1+sqrt(2))-1)) = sqrt(2+2sqrt(2))+sqrt(2)