How do you simplify #2/(sqrt(1+sqrt(2))-1)# ?
1 Answer
Nov 20, 2016
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We find:
#2/(sqrt(1+sqrt(2))-1) = (2(sqrt(1+sqrt(2))+1))/((sqrt(1+sqrt(2))-1)(sqrt(1+sqrt(2))+1))#
#color(white)(2/(sqrt(1+sqrt(2))-1)) = (2sqrt(1+sqrt(2))+2)/((color(red)(cancel(color(black)(1)))+sqrt(2))-color(red)(cancel(color(black)(1))))#
#color(white)(2/(sqrt(1+sqrt(2))-1)) = (2sqrt(1+sqrt(2))+2)/(sqrt(2))#
#color(white)(2/(sqrt(1+sqrt(2))-1)) = sqrt(2)sqrt(1+sqrt(2))+sqrt(2)#
#color(white)(2/(sqrt(1+sqrt(2))-1)) = sqrt(2+2sqrt(2))+sqrt(2)#