Question #2e6ef

1 Answer
Feb 18, 2017

y=x2(arccot(x+2+Cx+C)+kπ), k=0,1,2,

Explanation:

Making z=xy we have dzdx=1dydx so

dydx=sin(xy)dzdx=1sin(z) This differential equation is separable so

dz1sin(z)=dx integrating

2sin(z2)cos(z2)sin(z2)=x+C or

2cot(z2)1=x+C or

2cot(xy2)1=x+C

Finally

y=x2(arccot(x+2+Cx+C)+kπ)