Rental price is P=$2.25P=$2.25 , Quanity on rental is 14001400
Let xx be he number of $0.25$0.25 increase in price .
Income(I) = Price(P) *⋅ quantity(Q) , for every increase of
$0.25$0.25 in price I = (2.25+0.25x) * ( 1400 -100x)I=(2.25+0.25x)⋅(1400−100x) or
I = -25x^2 +125x +3150 I=−25x2+125x+3150 or
I = -25(x^2 -5x) +3150 I=−25(x2−5x)+3150 or
I = -25{x^2 -5x +(5/2)^2} +625/4 +3150 I=−25{x2−5x+(52)2}+6254+3150 or
I = -25(x-5/2)^2 + 3306.25 I=−25(x−52)2+3306.25 , So II is maximum when
x=2.5x=2.5 .To maximize the income rental price should be
P=2.25+2.5*0.25=$2.875P=2.25+2.5⋅0.25=$2.875 for Quanity on rental iof
1400-2.5*100 =11751400−2.5⋅100=1175 and maximum income will be
$3306.25 $3306.25 [Ans]