Question #3c139

1 Answer
Sep 11, 2017

To maximize the income rental price should be $2.875$2.875.

Explanation:

Rental price is P=$2.25P=$2.25 , Quanity on rental is 14001400

Let xx be he number of $0.25$0.25 increase in price .

Income(I) = Price(P) * quantity(Q) , for every increase of

$0.25$0.25 in price I = (2.25+0.25x) * ( 1400 -100x)I=(2.25+0.25x)(1400100x) or

I = -25x^2 +125x +3150 I=25x2+125x+3150 or

I = -25(x^2 -5x) +3150 I=25(x25x)+3150 or

I = -25{x^2 -5x +(5/2)^2} +625/4 +3150 I=25{x25x+(52)2}+6254+3150 or

I = -25(x-5/2)^2 + 3306.25 I=25(x52)2+3306.25 , So II is maximum when

x=2.5x=2.5 .To maximize the income rental price should be

P=2.25+2.5*0.25=$2.875P=2.25+2.50.25=$2.875 for Quanity on rental iof

1400-2.5*100 =117514002.5100=1175 and maximum income will be

$3306.25 $3306.25 [Ans]