How do you factor #x^3-9x^2+25x-21#, given that #x=3# is a zero ?
1 Answer
Nov 2, 2016
Explanation:
#h(x) = x^3-9x^2+25x-21#
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We use this later with
We are told that
#x^3-9x^2+25x-21 = (x-3)(x^2-6x+7)#
Then, completing the square we find:
#x^2-6x+7 = x^2-6x+9-2#
#color(white)(x^2-6x+7) = (x-3)^2-(sqrt(2))^2#
#color(white)(x^2-6x+7) = ((x-3)-sqrt(2))((x-3)+sqrt(2))#
#color(white)(x^2-6x+7) = (x-3-sqrt(2))(x-3+sqrt(2))#
Putting it all together:
#x^3-9x^2+25x-21 = (x-3)(x-3-sqrt(2))(x-3+sqrt(2))#