Question #e8728

2 Answers
Nov 2, 2016

a) alpha=20.958^@, beta=69.042^@

Explanation:

enter image source here

Part a) :

Let AC=1 unit
=> AB=cos25, BC=sin25, CD=tana=tanalpha
Given Area DeltaABC = Area DeltaACD
=> 1/2*AB*BC=1/2*AC*CD
=>cancel(1/2)*cos25*sin25=cancel(1/2)*1*tanalpha
=> tanalpha=cos25sin25
=> alpha=tan^-1(cos25sin25)=20.958^@
=> beta=90-20.958=69.042^@

Nov 2, 2016

enter image source here

Part(b)

Let hypotenuse of the lower triangle be h . Then the opposite of 25^@ will be =hsin25^@ and the adjacent will be =hcos25^@

For upper triangle
The hypotenuse =hsecalpha
and opposite to alpha is =htanalpha

By the condition of part(b) of the given problem the perimeter of both the triangle (upper and lower) are same. So we can say that the sum of other two sides excluding common side will be same for both the triangles.

Hence

hsecalpha+htanalpha=hcos25^@+hsin25^@

=>secalpha+tanalpha=cos25^@+sin25^@=1.3289...(1)

Now

1.3289(secalpha-tanalpha)=sec^2alpha-tan^2alpha=1

=>secalpha-tanalpha=1/1.3289

=>secalpha-tanalpha=0.7525...(2)

Adding (1) and (2) we get

2secalpha=2.0814

=>secalpha=1.0407

=cosalpha=0.9609

=>alpha=cos^-1(0.9609)= 16.077^@

And

beta=90^@-alpha=73.923^@

Part-(a)

By the given condition of part (a) of the question

Area of the upper triangle = Area of the lower triangle

=>1/2xxhxxhtanalpha=1/2hcos25^@xxhsin25^@

tanalpha=1/2xx2cos25^@xxsin25^@=1/2xxsin50^@=0.3830

=>alpha =tan^-1(0.3830)=20.958^@

Then beta=90^@-20.95^@=69.042^@