Question #b5d1e

1 Answer
Oct 29, 2017

2xcscx - 2x^2cot2xcsc2x

Explanation:

We can approach this using the quotient rule;

y= x^2csc2x = x^2/(sin2x)

hence quoteint rule; if f(x)=u/v, then ,f'(x) = (vdu-udv)/v^2

then d/dx(x^2/(sin2x)) = (sin2x*2x - x^2*2cos2x)/sin^2(2x)

as d/dx( sinlamdax ) = lamdacos(lamdax)

Hence simplifying to give;

dy/dx = 2xcsc2x - 2x^2cot2xcsc2x