Question #48c60

2 Answers
Apr 13, 2017

-(2sec^2x)/(1+tanx)^2

Explanation:

differentiate using the color(blue)"quotient rule"

"Given " f(x)=(g(x))/(h(x))" then"

• f'(x)=(h(x)g'(x)-g(x)h'(x))/(h(x))^2

color(orange)"Reminder" d/dx(tanx)=sec^2x

"here " g(x)=1-tanxrArrg'(x)=-sec^2x

"and " h(x)=1+tanxrArrh'(x)=sec^2x

rArrf'(x)=((1+tanx)(-sec^2x)-(1-tanx)(sec^2x))/(1+tanx)^2

color(white)(rArrf'(x))=(-sec^2xcancel(-sec^2xtanx)-sec^2xcancel(+sec^2xtanx))/(1+tanx)^2

color(white)(rArrf'(x))=-(2sec^2x)/(1+tanx)^2

Apr 13, 2017

-2/(cosx+sinx)^2,
or,
-2/(1+sin2x).

Explanation:

Observe that, (1-tanx)/(1+tanx)=tan(pi/4-x).

Hence, d/dx{(1-tanx)/(1+tanx)}=d/dx{tan(pi/4-x),

=sec^2(pi/4-x)*d/dx(pi/4-x),...[because," The Chain Rule]"

=-sec^2(pi/4-x),

=-1/{cos(pi/4-x)}^2,

-1/{cos(pi/4)cosx+sin(pi/4)sinx}^2,

=-1/{1/sqrt2(cosx+sinx)}^2,

=-2/(cosx+sinx)^2, or,

=-2/{cos^2x+2cosxsinx+sin^2x},

=-2/(1+sin2x).

Enjot Maths.!