Firstly, you should be more careful when copying and publishing problems. The correct post should be:
#{(x^3+1 = 81(y^2+y)) ,
(x^2+x= 9(y^3 +1)):}#
because so, adding term to term
#{(x^3+1 = 3 xx 27(y^2+y)) ,
(3(x^2+x)= 27(y^3 +1)):}#
we obtain
#(x+1)^3=27(y+1)^3#
and
#x+1=3(y+1)#
Now solving the system
#{(x+1=3(y+1)),(x^2 + x = 9 (y^3 + 1)):}#
we obtain
#((x=-1,y=-1),(x=5-sqrt(6),y=1/3(3-sqrt(6))),(x=5+sqrt(6),y=1/3(3+sqrt(6))))#
Note:
To solve
#{(x+1=3(y+1)),(x^2 + x = 9 (y^3 + 1)):}# we proceed as follows:
In the second equation
#x^2+x=x(x+1) = x(3(y+1))=9 (y^3 + 1))# then
#x = 9/3(y^3+1)/(y+1) = 3(1-y+y^2)# and finally
#x = 3y+3-1=3-3y+3y^2# or
#3 y^2 - 6 y + 1 =0#