Show that #sum_(n=1)^oo 1/n# is divergent using the integral criterion ? Calculus Tests of Convergence / Divergence Limit Comparison Test for Convergence of an Infinite Series 1 Answer Cesareo R. Aug 27, 2016 The series sum of #1/n# is divergent. Explanation: #1/n, n = 1,2,3, cdots# is a monotonic decrescent sequence and #1/x# is a monotonic decrescent function for #x in [1,oo)# Comparing #sum_(k=1)^oo 1/k# and #int _1^oo dx/x# we know that #int_1^oo (dx)/x le sum_(k=1)^oo 1/k# #int _1^(alpha) dx/x = log_e(alpha)# and #lim_(alpha->oo)log_e(alpha) = oo# so #sum_(k=1)^oo 1/k = oo# Answer link Related questions How do you use the limit comparison test on the series #sum_(n=1)^oon/(2n^3+1)# ? How do you use the limit comparison test on the series #sum_(n=1)^oo(n+1)/(n*sqrt(n))# ? How do you use the limit comparison test on the series #sum_(n=2)^oosqrt(n)/(n-1)# ? How do you use the limit comparison test on the series #sum_(n=1)^oo(n^2-5n)/(n^3+n+1)# ? How do you use the limit comparison test on the series #sum_(n=1)^oo1/sqrt(n^3+1)# ? What is the Limit Comparison Test? How do I use the Limit Comparison Test on the series #sum_(n=1)^oosin(1/n)# ? How do I know when to use limit comparison test vs the direct comparison test? How do you use the comparison test (or the limit comparison test) for #(1+sin(x))/10^x#? How do you determine whether #1/(n!)# convergence or divergence with direct comparison test? See all questions in Limit Comparison Test for Convergence of an Infinite Series Impact of this question 2433 views around the world You can reuse this answer Creative Commons License