We are to evalute sin33.
sin33=sin(18+15)
=sin18cos15+cos18sin15.....(1)
Evaluation of sin18 and cos18
Let A=18^@
=>5A=90^@
=>3A=90^@-2A
:.cos(3A)=cos(90^@-2A)
=>4cos^3A-3cosA=sin2A=2sinAcosA
=>4cos^2A-3=2sinA
=>4-4sin^2A-3=2sinA
=>4sin^2+2sinA-1=0
=>sinA=(-2+sqrt(2^2-4*4*
(-1)))/(2*4)
=(-2+sqrt20)/8=(sqrt5-1)/4
:.sin(18^@)=(sqrt5-1)/4,
cos18^@=sqrt(1-sin^2 18^@)
=sqrt(1-(sqrt5-1)^2/16)
=sqrt(16-5-1+2sqrt5)/4
=1/4sqrt(10+2sqrt5)
Evaluation of sin15 and cos15
sin15=sqrt(1/2(1-cos30))
=sqrt(1/2(1-sqrt3/2))
=sqrt(1/8(4-2sqrt3))
=sqrt(1/8(sqrt3-1)^2)
=(sqrt3-1)/(2sqrt2)
cos15=sqrt(1/2(1+cos30))
=sqrt(1/2(1+sqrt3/2))
=sqrt(1/8(4+2sqrt3))
=sqrt(1/8(sqrt3+1)^2)
=(sqrt3+1)/(2sqrt2)
Using relation (1)
sin33=sin18cos15+cos18sin15
=(sqrt5-1)/4*(sqrt3+1)/(2sqrt2)+sqrt(10+2sqrt5)/4*(sqrt3-1)/(2sqrt2)
=1/(8sqrt2)((sqrt5-1)(sqrt3+1)+(sqrt(10+2sqrt5))(sqrt3-1))