Question #e3aad

1 Answer
Aug 16, 2016

We are to evalute sin33.

sin33=sin(18+15)

=sin18cos15+cos18sin15.....(1)

Evaluation of sin18 and cos18

Let A=18^@

=>5A=90^@

=>3A=90^@-2A

:.cos(3A)=cos(90^@-2A)

=>4cos^3A-3cosA=sin2A=2sinAcosA

=>4cos^2A-3=2sinA

=>4-4sin^2A-3=2sinA

=>4sin^2+2sinA-1=0

=>sinA=(-2+sqrt(2^2-4*4* (-1)))/(2*4)

=(-2+sqrt20)/8=(sqrt5-1)/4

:.sin(18^@)=(sqrt5-1)/4,

cos18^@=sqrt(1-sin^2 18^@)

=sqrt(1-(sqrt5-1)^2/16)

=sqrt(16-5-1+2sqrt5)/4

=1/4sqrt(10+2sqrt5)

Evaluation of sin15 and cos15

sin15=sqrt(1/2(1-cos30))

=sqrt(1/2(1-sqrt3/2))

=sqrt(1/8(4-2sqrt3))

=sqrt(1/8(sqrt3-1)^2)

=(sqrt3-1)/(2sqrt2)

cos15=sqrt(1/2(1+cos30))

=sqrt(1/2(1+sqrt3/2))

=sqrt(1/8(4+2sqrt3))

=sqrt(1/8(sqrt3+1)^2)

=(sqrt3+1)/(2sqrt2)

Using relation (1)

sin33=sin18cos15+cos18sin15

=(sqrt5-1)/4*(sqrt3+1)/(2sqrt2)+sqrt(10+2sqrt5)/4*(sqrt3-1)/(2sqrt2)

=1/(8sqrt2)((sqrt5-1)(sqrt3+1)+(sqrt(10+2sqrt5))(sqrt3-1))