How do you factor completely #64x^4-9# ?
1 Answer
#64x^4-9#
#=(8x^2-3)(8x^2+3)#
#=(2sqrt(2)x-sqrt(3))(2sqrt(2)x+sqrt(3))(8x^2+3)#
#=(2sqrt(2)x-sqrt(3))(2sqrt(2)x+sqrt(3))(2sqrt(2)x-sqrt(3)i)(2sqrt(2)x+sqrt(3)i)#
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We will use this three times below.
#64x^4-9#
#=(8x)^2-3^2#
#=(8x^2-3)(8x^2+3)#
If we allow irrational coefficients then we can factor this further:
#=((2sqrt(2)x)^2-(sqrt(3))^2)(8x^2+3)#
#=(2sqrt(2)x-sqrt(3))(2sqrt(2)x+sqrt(3))(8x^2+3)#
That is as far as we can go with Real coefficients, since
#=(2sqrt(2)x-sqrt(3))(2sqrt(2)x+sqrt(3))((2sqrt(2)x)^2-(sqrt(3)i)^2)#
#=(2sqrt(2)x-sqrt(3))(2sqrt(2)x+sqrt(3))(2sqrt(2)x-sqrt(3)i)(2sqrt(2)x+sqrt(3)i)#