The sf(HCO_3^-) ion is basic:
sf(HCO_(3(aq))^(-)+H_2O_((l))rightleftharpoonsH_2CO_(3(aq))+OH_((aq))^-)
sf(K_(b)=([H_2CO_3][OH^(-)])/([HCO_3^(-)])=1.99xx10^(-8)color(white)(x)"mol/l")
We know that sf([H_2CO_3]=[OH^(-)])
Because the dissociation is small I will assume that the equilibrium concentration of sf([HCO_3^-]} is equal to sf(0.1color(white)(x)"mol/l")
So now we can write:
sf(K_b=[OH^(-)]^(2)/(0.1)=1.99xx10^(-8))
:.sf([OH^-]^(2)=1.99xx10^(-8)xx0.1=1.99xx10^(-9))
From which:
sf([OH^-]=4.46x10^(-5)color(white)(x)"mol/l")
:.sf(pOH=-log(4.46xx10^(-5))=4.35)
sf(pH+pOH=14)
:.sf(pH=14-4.35=9.65)