Question #873de

1 Answer
Jul 31, 2016

sf(9.65)

Explanation:

The sf(HCO_3^-) ion is basic:

sf(HCO_(3(aq))^(-)+H_2O_((l))rightleftharpoonsH_2CO_(3(aq))+OH_((aq))^-)

sf(K_(b)=([H_2CO_3][OH^(-)])/([HCO_3^(-)])=1.99xx10^(-8)color(white)(x)"mol/l")

We know that sf([H_2CO_3]=[OH^(-)])

Because the dissociation is small I will assume that the equilibrium concentration of sf([HCO_3^-]} is equal to sf(0.1color(white)(x)"mol/l")

So now we can write:

sf(K_b=[OH^(-)]^(2)/(0.1)=1.99xx10^(-8))

:.sf([OH^-]^(2)=1.99xx10^(-8)xx0.1=1.99xx10^(-9))

From which:

sf([OH^-]=4.46x10^(-5)color(white)(x)"mol/l")

:.sf(pOH=-log(4.46xx10^(-5))=4.35)

sf(pH+pOH=14)

:.sf(pH=14-4.35=9.65)