Question #f593a
1 Answer
Explanation:
Consider the 2 complex numbers.
#z_1=r_1(costheta_1+isintheta_1)# and
#z_2=r_2(costheta_2+isintheta_2)# dividing them gives.
#(z_1)/(z_2)=(r_1(costheta_1+isintheta_1))/(r_2(costheta_2+isintheta_2))# multiply numerator and denominator by
#(costheta_2-isintheta_2)#
#(z_1)/(z_2)=(r_1(costheta_1+isintheta_1)(costheta_2-isintheta_2))/(r_2(costheta_2+isintheta_2)(costheta_2-isintheta_2))# distribute the brackets.
#=(r_1(costheta_1costheta_2+sintheta_1sintheta_2+i(sintheta_1costheta_2-costheta_1sintheta_2)))/(r_2(cos^2theta_2+sin^2theta_2))#
#=[(r_1)/(r_2)](cos(theta_1-theta_2)+isin(theta_1-theta_2)........ (A)# (A) is obtained using the
#color(blue)"trigonometric identities"#
#color(red)(|bar(ul(color(white)(a/a)color(black)(cos(A-B)=cosAcosB+sinAsinB)color(white)(a/a)|)))" and "#
#color(red)(|bar(ul(color(white)(a/a)color(black)(sin(A-B)=sinAcosB-cosAsinB)color(white)(a/a)|)))# and of course, the denominator
#cos^2theta_2+sin^2theta_2=1# The result being
#color(red)(|bar(ul(color(white)(a/a)color(black)(|z_1/(z_2)|=(r_1)/(r_2)" and " arg((z_1)/(z_2))=theta_1-theta_2)color(white)(a/a)|)))#
#color(blue)"----------------------------------------------------------------"# Here
#r_1=5,theta_1=(5pi)/8" and " r_2=10,theta_2=pi/4#
#rArr(5cis((5pi)/8))/(10cis(pi/4))=1/2cis((5pi)/8-pi/4)=1/2cis((3pi)/8)#