Question #8e330

2 Answers
May 28, 2017

2.

Explanation:

The Expression
=1/(sqrt2+sqrt1)+1/(sqrt3+sqrt2)+1/(sqrt4+sqrt3)+...+1/(sqrt9+sqrt8),

=1/(sqrt2+sqrt1)xx(sqrt2-sqrt1)/(sqrt2-sqrt1)
+1/(sqrt3+sqrt2)xx(sqrt3-sqrt2)/(sqrt3-sqrt2)
+1/(sqrt4+sqrt3)xx(sqrt4-sqrt3)/(sqrt4-sqrt3)
+vdots
+1/(sqrt9+sqrt8)xx(sqrt9-sqrt8)/(sqrt9-sqrt8)

=(sqrt2-sqrt1)/(2-1)+(sqrt3-sqrt2)/(3-2)+...+(sqrt9-sqrt8)/(9-8)

=(cancelsqrt2-1)+(cancelsqrt3-cancelsqrt2)+(cancelsqrt4-cancelsqrt3)+...+(sqrt9-cancelsqrt8)

=3-1

=2.

Enjoy Maths.!

May 28, 2017

The answer is =2

Explanation:

We need

(a+b)(a-b)=a^2-b^2

The general term is

u_n=1/(sqrtn+sqrt(n+1))

Simplifying the denominator

u_n=1/(sqrt(n+1)+sqrt(n))*(sqrt(n+1)-sqrtn)/(sqrt(n+1)-sqrtn)

=(sqrt(n+1)-sqrtn)/(n+1-n)

=(sqrt(n+1)-sqrtn)

Therefore,

n=1, =>, u_1=cancelsqrt2-1

n=2, =>, u_2=cancelsqrt3-cancelsqrt2

n=3, =>, u_3=cancelsqrt4-cancelsqrt3

n=7, =>, u_7=cancelsqrt8-cancelsqrt7

n=8, =>, u_8=sqrt9-cancelsqrt8

sum_(n=1)^8u_n=sqrt9-1=3-1=2