Question #defee

1 Answer
Mar 15, 2016

sin 2t = - 6/13sin2t=613

Explanation:

P is in the Quadrant II.
We have: angle t = (pi/2 + angle a).t=(π2+a).
Angle a is defined by tan a = 2/3tana=23 --> sin a = 2/sqrt(4 + 9) = 2/sqrt13sina=24+9=213 -->
cos^2 a = 1 - sin^2 a = 1 - 4/13 = 9/13cos2a=1sin2a=1413=913 --> cos a = 3/sqrt13cosa=313.
Find the trig functions of t.
sin t = sin (a + pi/2) = cos a = 3/sqrt13sint=sin(a+π2)=cosa=313
cos t = cos (pi/2 + a) = - sin a = - 2/sqrt13cost=cos(π2+a)=sina=213
sin 2t = 2sin t.cos t = - (2/sqrt13)(3/sqrt13) = - 6/13sin2t=2sint.cost=(213)(313)=613
cos^2 2t = 1 - sin^2 t = 1 - 36/169 = 133/169cos22t=1sin2t=136169=133169
cos 2t = - sqrt133/13cos2t=13313. (2t is in Quadrant III)
sin (t - 150) = sin t.cos 150 - sin 150.cos t.
= - (3/sqrt13)(-sqrt3/2) - (1/2)(-2/sqrt13) ==(313)(32)(12)(213)=
= - ((3sqrt3)/(2sqrt13)) + (2/(2sqrt13)) = (2 - 3sqrt3)/(2sqrt13)=(33213)+(2213)=233213
cos (225 - t) = cos 225.cos t + sin 225.sin t =
cos 225 = -cos 45 = -sqrt2/2cos225=cos45=22 ; and sin 225 = -sin 45 = -sqrt2/2sin225=sin45=22