How much heat will be released when 6.44 g of sulfur reacts with excess O2 according to the following reaction?
#"S"(s) + 3/2"O"_2(g) -> "SO"_3(g)# , #DeltaH_"rxn"^@ = -"395.7 kJ/mol"#
1 Answer
STANDARD ENTHALPY OF REACTION
First, let's just check the standard enthalpy of formation for making one
We'll work with
But wait a minute... that means in THIS case:
...the enthalpy of formation of the product fully contributes to the enthalpy of the reaction that makes
#SO_3(g)# .
And if you look in your thermodynamic tables in your textbook appendix, you should see that oxygen as a diatomic substance (
So, based off of that, the reaction in standard conditions (defined under
#color(green)("S"(s) + 3/2"O"_2(g) -> "SO"_3(g))#
#color(green)(DeltaH_"rxn"^@ = -"395.7 kJ/mol")#
Now we just have to determine what the relationship between the heat released
HEAT FLOW VS. ENTHALPY IN "GENERAL CHEMISTRY" CONDITIONS?
Something that probably no one told you in General Chemistry (even your professor or teacher) is that you are assuming constant-pressure conditions during your Thermodynamics unit.
I'm going to spare you the derivation, but you should know that when the pressure is kept constant, the heat flow in a reaction is equal to the enthalpy of reaction:
#color(green)(DeltaH = q_p)# where
#q_p# is heat flow at a constant pressure. The units here specifically are typically#"kJ"# , though one can use#"J"# .
STANDARD ENTHALPY IS DEFINED ON A PER-MOL BASIS
If we note that the enthalpy of reaction given at standard conditions is on a per-mol basis (and I realize this may be a stretch, but bear with me):
The enthalpy of reaction is a normalization of the heat flow in the reaction.
What that means is that when you scale up any old reaction at constant
Lastly, only the limiting reagent is used up completely. Therefore, we can construct this equation:
#\mathbf(DeltaH_"rxn"^@ = q_p/("mols of Limiting Reagent"))#
with units of#"kJ/mol"# .
Did you notice how you have excess oxygen? That immediately tells you that the limiting reagent is sulfur.
SCALING YOUR REACTION TO THE STANDARD SCALE
So figuring out the scaling here:
#("6.44" cancel"g S") / ("1" cancel"mol S" xx ("32.065" cancel"g S")/cancel("1 mol S")) xx 100%#
#~~ color(green)(20.08%)#
So, what you have is
#color(blue)(q_p = "79.47 kJ")#
Be sure to mention that heat was released, if you write a positive answer. If you don't, write a negative answer and the release of heat is implied.