How do you begin from the Gibbs-Helmholtz equation to determine the new temperature at which a reaction ceases to become spontaneous? What fundamental assumptions are involved?
1 Answer
The Gibbs-Helmholtz equation at a chosen standard pressure (
#((del(G^@//T))/(delT))_P = -H^@/T^2#
To check spontaneity, one would need
The alternative version is:
#((del(DeltaG^@//T))/(delT))_P = -(DeltaH^@)/T^2#
Keeping in mind that this process is at constant pressure:
#d(DeltaG^@//T) = -(DeltaH^@)/T^2dT#
Integrating both sides, we get:
#int_((1))^((2)) d(DeltaG^@//T) = -int_(T_1)^(T_2) (DeltaH^@)/T^2dT#
Assuming that
#(DeltaG^@(T_2))/T_2 - (DeltaG^@(T_1))/T_1 = DeltaH^@(P^@)[1/T_2 - 1/T_1]#
A reaction is "no longer spontaneous" when it reaches equilibrium. For that scenario,
#-(DeltaG^@(T_1))/(DeltaH^@)1/T_1 = 1/T_2 - 1/T_1#
#-(DeltaG^@(T_1))/(DeltaH^@)1/T_1 + 1/T_1 = 1/T_2#
This becomes:
#color(blue)(T_2) = [-(DeltaG^@(T_1))/(DeltaH^@)1/T_1 + 1/T_1]^(-1)#
#= [(1 - (DeltaG^@(T_1))/(DeltaH^@))1/T_1]^(-1)#
#= T_1/[1 - (DeltaG^@(T_1))/(DeltaH^@)]#
#= color(blue)((DeltaH^@T_1)/[DeltaH^@ - DeltaG^@(T_1)])#
Or, if we use the relation that
#color(blue)(T_2) = (DeltaH^@T_1)/[cancel(DeltaH^@ - DeltaH^@) + T_1DeltaS^@]#
#= color(blue)(DeltaH^@//DeltaS^@)#
which should be a familiar result.