Question #e32b6

2 Answers
Sep 15, 2015

I_(3(aq))^(-) + 2S_2O_(3(aq))^(2–) -> 3 I_((aq))^(–) + S_4O_(6(aq))^(2–)I3(aq)+2S2O23(aq)3I(aq)+S4O26(aq)

Explanation:

  • Oxidation:

2S_2O_(3(aq))^(2–) -> S_4O_(6(aq))^(2–) + 2e^-2S2O23(aq)S4O26(aq)+2e

  • Reduction: I_(3(aq))^(–) + 2e^(-) -> 3 I_((aq))^(–)I3(aq)+2e3I(aq)

the overall reaction then:

  • Redox:

I_(3(aq))^(–) + 2S_2O_(3(aq))^(2–) -> 3 I_((aq))^(–) + S_4O_(6(aq))^(2–)I3(aq)+2S2O23(aq)3I(aq)+S4O26(aq)

From the balanced equation, we can say that:

(1)/"1" * n_(I_3^(–)) = (1)/"2" * n_(S_2O_3^(2–))11nI3=12nS2O23.

where the denominators 1 and 2 were taking from the corresponding coefficients of I_3^–I3 and S_2O_3^(2–)S2O23 respectively.

Now,

[I_3^–][I3] . V = (1)/"2" * [S_2O_3^(2–)] * V^'V=12[S2O23]V

(since n = C * Vn=CV), where

V^' = "10.50 mL "V=10.50 mL and " "V = "15.00 mL" V=15.00 mL

Therefore,

[I_3^–] = (1)/"2" * [S_2O_3^(2–)] * (V')/"V"[I3]=12[S2O23]V'V

[I_3^–] = (1)/"2" * "0.0500M" * (10.50 cancel("mL"))/(15.00 cancel("mL")) = "0.0175M"[I3]=120.0500M10.50mL15.00mL=0.0175M

(rounded to 3 significant figures)

I would like to suggest the following video, that deals with a similar example in terms of stoichiometry of a redox reaction.

Sep 15, 2015

(a)" "I_(3(aq))^(-)+2S_2O_(3(aq))^(2-)rarrS_4O_(6(aq))^(2-)+3I_((aq))^-(a) I3(aq)+2S2O23(aq)S4O26(aq)+3I(aq)

(b)" "0.0175"mol/l"(b) 0.0175mol/l

Explanation:

Thiosulfate ions give out electrons:

2S_2O_(3(aq))^(2-)rarrS_4O_(6(aq))^(2-)+2e2S2O23(aq)S4O26(aq)+2e

These are taken in by I_3^-I3 which are reduced:

I_(3(aq))^(-)+2erarr3I_((aq))^(-)I3(aq)+2e3I(aq)

Adding both sides gives:

I_(3(aq))^(-)+2S_2O_(3(aq))^(2-)rarrS_4O_(6(aq))^(2-)+3I_((aq))^-I3(aq)+2S2O23(aq)S4O26(aq)+3I(aq)

(b).

c=n/vc=nv

n=cxxvn=c×v

So no. moles S_2O_3^(2-)=0.05xx0.0105=5.25xx10^(-4)S2O23=0.05×0.0105=5.25×104

From the equation we can see that the number of moles of I_3^-I3 must be half of this:

no. moles I_3^(-)=(5.25xx10^(-4))/(2)=2.625xx10^(-4)I3=5.25×1042=2.625×104

c=n/vc=nv

So [I_(3(aq))^(-)]=(2.625xx10^(-4))/(0.015)=0.0175"mol/l"[I3(aq)]=2.625×1040.015=0.0175mol/l