Question #e3d6d

1 Answer
Apr 11, 2015

I would say that the difference in boiling points is due to an increase in external pressure.

A liquid boils when its vapor pressure is equal to the external pressure - more often than not, this is the atmospheric pressure.

![http://www.800mainstreet.com/08/0008-0013-vapor_pres.html](useruploads.socratic.org)

So, at normal atmospheric pressure, or 1 atm, ethanol boils at 78.3^@"C". In this case, the heat you provide is enough to make the vapor pressure equal the atmospheric pressure -> boiling takes place.

If the atmospheric pressure is higher, the vapor pressure will have to be higher as well, since boiling occurs only when vapor pressure equals atmospheric pressure.

As a result, you'll need to supply more heat to the sample, which means it will boil at a higher temperature.

In your case, the first sample boils at 79^@"C", which means that the atmospheric pressure is very, very close to 1 atm, while the second sample boils at 81^@"C", which implies that the atmosperic pressure is a little higher than 1 atm.

SIDE NOTE

You can determine this mathematically by using the Clausius-Clapeyron equation

ln(P_2/P_1) = (DeltaH_"vap")/R * (1/T_1 - 1/T_2), where

P_1, P_2 - the vapor pressure at boiling point 79^@"C" and 81^@"C", respectively;
DeltaH_"vap" - the enthalpy of vaporization for ethanol - "38.56 kJ/mol";
T_1, T_2 - the boiling points of the first and of the second sample - expressed in Kelvin.

For the sake of argument, let's assume that, at 1 atm, ethanol boils at 79^@"C". Since T_2 is bigger than T_1, you'd expect P_2 to be bigger than P_1. Indeed it is

ln(P_2/1) = (38560cancel("J")/cancel("mol"))/(8.314cancel("J")/(cancel("K")cancel("mol"))) * (1/(352.15) - 1/(354.15))cancel("K")

ln(P_2) = 0.06917 => P_2 = "1.072 atm"

Higher atmospheric pressure, higher boling point.