Question #c4d7e

1 Answer
Dec 29, 2014

A quick way to solve nuclear half-life problems is by remembering that, esentially, you are dividing whatever amount you have by 2 for every half-life.

So, if you start with, say, 100 g of a radioactive isotope that has a half-life of 1 million years, you will have

1002=50 g after the first 1 million years,

502=25 g after another 1 million years,

252=12.5 g after another 1 million years,

12.52=6.25 g after another 1 million years, and so on...

So, for this example, you are left with 1/4th of the original sample after 2 "cycles". Therefore, since, in your case, the element's half-life is 703 million, 2 "cycles" mean

703 + 703 = 1406 million = 1.4 billion years.

If the problem would have asked for, say, 1/16th of the original sample, that would have corresponded to

1(2)number of cycles=116, so you'd have

2number of cycles=16 4 cycles. Therefore,

4703 million=2812 million=2.8 billion years need to pass to reach 1/16th of the original sample.