Question #91e2a
1 Answer
Explanation:
Equations of this sort can be easily balanced by using oxidation numbers for every atom involved in the reaction.
#stackrel(color(blue)(+1))("K")stackrel(color(blue)(+7))("Mn")stackrel(color(blue)(-2))("O")_4 + stackrel(color(blue)(+1))("H")stackrel(color(blue)(-1))("Cl") -> stackrel(color(blue)(+1))("K")stackrel(color(blue)(-1))("Cl") + stackrel(color(blue)(+2))("Mn")stackrel(color(blue)(-1))("Cl")_2 + stackrel(color(blue)(+1))("H")_2stackrel(color(blue)(-1))("O") + stackrel(color(blue)(0))"Cl"_2#
The next step is to look for atoms that have undergone a change in their oxidation numbers (ON), which correlates to either a reduction, or an oxidation of that particular element.
You can see that manganese,
The reduction half-reaction looks like this
#stackrel(color(blue)(+7))("Mn")"O"_4^(-) + 5"e"^(-) -> stackrel(color(blue)(+2))("Mn"^(2+))#
Since you're in acidic solution, you can balance the oxygen and hydrogen atoms by adding water molecules to the side that needs oxygen, and protons,
In this case, you need four oxygen atoms on the products' side, so add four water molecules on that side
#stackrel(color(blue)(+7))("Mn")"O"_4^(-) + 5"e"^(-) -> stackrel(color(blue)(+2))("Mn"^(2+)) + 4"H"_2"O"#
To balance the hydrogen atoms, add eight protons on the reactants' side
#8"H"^(+) + stackrel(color(blue)(+7))("Mn")"O"_4^(-) + 5"e"^(-) -> stackrel(color(blue)(+2))("Mn"^(2+)) + 4"H"_2"O"#
Chlorine,
The oxidation half-reaction looks like this
#2stackrel(color(blue)(-1))("Cl"^(-)) -> stackrel(color(blue)(0))"Cl"_2 + 2"e"^(-)#
Since one chlorine atom will lose one electron, it follows that two chlorine atoms will lose a total of two electrons.
During an oxidation-reduction reaction, the total number of electrons lost in the oxidation half-reaction must be equal to the total number of electrons gained in the reduction half-reaction.
This means that you must multiply the oxidation half-reaction by
#{ ([2stackrel(color(blue)(-1))("Cl"^(-)) -> stackrel(color(blue)(0))"Cl"_2 + 2"e"^(-)] xx 5), ([8"H"^(+) + stackrel(color(blue)(+7))("Mn")"O"_4^(-) + 5"e"^(-) -> stackrel(color(blue)(+2))("Mn"^(2+)) + 4"H"_2"O"] xx 2) :}#
Add the resulting half-equations to get
#{ (10stackrel(color(blue)(-1))("Cl"^(-)) -> 5stackrel(color(blue)(0))"Cl"_2 + 10"e"^(-)), (16"H"^(+) + 2stackrel(color(blue)(+7))("Mn")"O"_4^(-) + 10"e"^(-) -> 2stackrel(color(blue)(+2))("Mn"^(2+)) + 8"H"_2"O") :}#
#color(white)(aaaaaaaaaaaaaaaaaaa)/color(white)(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)#
#10"Cl"^(-) + 16"H"^(+) + 2"MnO"_4^(-) + color(red)(cancel(color(black)(10"e"^(-)))) -> 5"Cl"_2 + color(red)(cancel(color(black)(10"e"^(-)))) + 2"Mn"^(2+) + 8"H"_2"O"#
Now, since hydrochloric acid,
Since you need
#2"MnO"_4^(-) + 16"HCl" ->2"Mn"^(2+) + 5"Cl"_2 + 8"H"_2"O"#
Add the potassium cations and the rest of the chloride anions back to the equation to get
#2"KMnO"_4 + 16"HCl" -> "KCl" + 2"MnCl"_2 + 5"Cl"_2 + 8"H"_2"O"#
Now all you have to do is multiply the potassium chloride,
#2"KMnO"_4 + 16"HCl" -> 2"KCl" + 2"MnCl"_2 + 5"Cl"_2 + 8"H"_2"O"#