Let's calculate the total capacitance of the circuit.
#C_1# and #C_2# are in series,so their combined capacitance is #(C_1 C_2)/(C_1+C_2)#
Similarly, #C_3# and #C_4# are in series,so their combined capacitance is #(C_3 C_4)/(C_3 +C_4)#
Again,their combination are in parallel,(because potential drop across them is the same)so net capacitance of the circuit is #(C_1 C_2)/(C_1+C_2) +(C_3 C_4)/(C_3 +C_4)=C# (let)
So,total charge flowing in the circuit is #Q=CV#
Now,let,charge flowing through capacitor #C_1# and #C_2# is #Q_1# and that flowing through #C_3# and #C_4# is #Q_2#
So, #Q_1 = (C_1 C_2)/(C_1+C_2) V# (as, #q=cv#)
and, #Q_2 = (C_3 C_4)/(C_3 +C_4) V# (as, #q=cv#)
Applying Kirchoff's law in the circuit,
#V_A-(Q_1)/(C_1) +(Q_2)/(C_3)=V_B#
or, #V_A -V_B= (Q_1)/(C_1) -(Q_2)/(C_3)#
putting the value of #Q_1 # and #Q_2# we get,
#V_A -V_B=(C_1 C_2)/(C_1+C_2) (V/(C_1)) -(C_3 C_4)/(C_3 +C_4) (V/(C_3))#
#=> V_A -V_B= [C_2/(C_1 +C_2) -C_4/(C_3 +C_4)] V#
If, #V_A - V_B =0#
then,
# [C_2/(C_1 +C_2) -C_4/(C_3 +C_4)] V=0#
Now, either,#V=0#
Or, #C_2/(C_1 +C_2) -C_4/(C_3 +C_4)=0#
i.e #C_2/(C_1 +C_2) =C_4/(C_3 +C_4)#
This is the condition for which #V_A -V_B# will be #0#