Apply Euler's Identity
e^(itheta)=costheta+isinthetaeiθ=cosθ+isinθ
e^(ipi/4)=cos(pi/4)+isin(pi/4)eiπ4=cos(π4)+isin(π4)
=sqrt2/2+isqrt2/2=√22+i√22
e^(i11/8pi)=cos(11/8pi)+isin(11/8pi)ei118π=cos(118π)+isin(118π)
cos(2theta)=2cos^2theta-1cos(2θ)=2cos2θ−1
costheta=sqrt((1+cos2theta)/2)cosθ=√1+cos2θ2
cos(11/8pi)=sqrt((1+cos(11/4pi)/2)cos(118π)=
⎷(1+cos(114π)2)
=sqrt((1-sqrt2/2)/2)=√1−√222
=sqrt(2-sqrt2)/2=√2−√22
cos(2theta)=1-2sin^2thetacos(2θ)=1−2sin2θ
sintheta=sqrt((1-cos(2theta))/2)sinθ=√1−cos(2θ)2
sin(11/8pi)=sqrt((1-cos(11/4pi))/2)sin(118π)=√1−cos(114π)2
=sqrt((1+sqrt2/2)/2)=√1+√222
=sqrt(2+sqrt2)/2=√2+√22
Finally,
e^(ipi/4)-e^(i11/8pi)eiπ4−ei118π
=sqrt2/2+isqrt2/2-sqrt(2-sqrt2)/2-isqrt(2+sqrt2)/2=√22+i√22−√2−√22−i√2+√22
=sqrt2/2-sqrt(2-sqrt2)/2+i(sqrt2/2-sqrt(2+sqrt2)/2)=√22−√2−√22+i(√22−√2+√22)