How do you evaluate e^( ( pi)/4 i) - e^( ( 11 pi)/8 i)eπ4ie11π8i using trigonometric functions?

1 Answer
Aug 13, 2018

The answer is =sqrt2/2-sqrt(2-sqrt2)/2+i(sqrt2/2-sqrt(2+sqrt2)/2)=22222+i(222+22)

Explanation:

Apply Euler's Identity

e^(itheta)=costheta+isinthetaeiθ=cosθ+isinθ

e^(ipi/4)=cos(pi/4)+isin(pi/4)eiπ4=cos(π4)+isin(π4)

=sqrt2/2+isqrt2/2=22+i22

e^(i11/8pi)=cos(11/8pi)+isin(11/8pi)ei118π=cos(118π)+isin(118π)

cos(2theta)=2cos^2theta-1cos(2θ)=2cos2θ1

costheta=sqrt((1+cos2theta)/2)cosθ=1+cos2θ2

cos(11/8pi)=sqrt((1+cos(11/4pi)/2)cos(118π)= (1+cos(114π)2)

=sqrt((1-sqrt2/2)/2)=1222

=sqrt(2-sqrt2)/2=222

cos(2theta)=1-2sin^2thetacos(2θ)=12sin2θ

sintheta=sqrt((1-cos(2theta))/2)sinθ=1cos(2θ)2

sin(11/8pi)=sqrt((1-cos(11/4pi))/2)sin(118π)=1cos(114π)2

=sqrt((1+sqrt2/2)/2)=1+222

=sqrt(2+sqrt2)/2=2+22

Finally,

e^(ipi/4)-e^(i11/8pi)eiπ4ei118π

=sqrt2/2+isqrt2/2-sqrt(2-sqrt2)/2-isqrt(2+sqrt2)/2=22+i22222i2+22

=sqrt2/2-sqrt(2-sqrt2)/2+i(sqrt2/2-sqrt(2+sqrt2)/2)=22222+i(222+22)