How do you prove sin3θ = 3cos^2θ sinθ -sin^3θ ?

1 Answer
Aug 12, 2018

Please see below.

Explanation:

We have to prove :

sin3θ = 3cos^2θ sinθ -sin^3θ

We know that ,

color(brown)((1)sin(x+y)=sinxcosy+cosxsiny

Let ,

LHS=sin3theta

LHS=sin(2theta+theta)to[use, (1)]

LHS=color(red)(sin2theta)costheta+color(blue)(cos2theta)sintheta

LHS=color(red)(2sinthetacostheta)costheta+color(blue)((cos^2theta-sin^2theta))sintheta

LHS=2cos^2thetasintheta+cos^2thetasintheta-sin^3theta

LHS=3cos^2thetasintheta-sin^3theta

LHS=RHS