Let , #y'=(dy)/(dx)=y_1#
#(2)y=x^lnx*(secx)^(3x)=u*v.......................(i)#
Let ,
#u=x^lnx# ,#..................and v=(secx)^(3x)#
Taking natural log both sides we get
#lnu=ln(x^lnx)# , #................andlnv=ln((secx)^(3x))#
#:.lnu=lnx*lnx =(lnx)^2 ............and lnv=3xln(secx)#
Diff.w.r.t. #x#
#1/u(du)/(dx)=2lnx*1/xand 1/v(dv)/(dx)#=#3x*(secxtanx)/secx+ln(secx)*3#
#1/u(du)/(dx)=1/xlnx^2............and 1/v(dv)/(dx)#=#3xtanx+3ln(secx)#
#(du)/(dx)=u/xlnx^2............and (dv)/(dx)=3v[xtanx+ln(secx)]....(ii)#
Now ,
#y=u*vto "Product Rule" #
#(dy)/(dx)=u(dv)/(dx)+v(du)/(dx)#
From #(i) and (ii)#
#:.(dy)/(dx)=x^lnx [u/xlnx^2]+(secx)^(3x)[3v(xtanx+ln(secx))]#
Subst. back values of #u and v#
#(dy)/(dx)#=#x^lnx [x^lnx/xlnx^2]+(secx)^(3x)[3(secx)^(3x)(xtanx+ln(secx))]#
#(dy)/(dx)=x^(2lnx-1)*lnx^2+3(secx)^(6x)[xtanx+ln(secx)]#