Here ,
#sin^2theta-cos^2theta=2-5costheta ,.......0<= theta <=2pi#
#:.1-cos^2theta-cos^2theta=2-5costheta#
#:.2cos^2theta-5costheta+1=0#
Comparing with #ax^2+bx+c=0#
#a=2 , b=-5 andc=1#
#Delta=b^2-4ac=(-5)^2-4(2)(1)=17#
So ,
#costheta=(-b+-sqrtDelta)/(2a)=(5+-sqrt17)/(2*2)#
#:.costheta=(5-sqrt17)/4 or costheta=(5+sqrt17)/4 #
#:.costheta~~0.22 or costheta~~2.28 !in [-1,1]#
#:.costheta~~0.22 >0=>1^(st)Quadrant or 4^(th)Quadrant#
#:.theta=arc cos((5-sqrt17)/4) or theta=2pi-arc cos((5-
sqrt17)/4)#
#:.theta=(1.35)^R # OR # theta=2pi-(1.35)^R# ,where , #0
<= theta < 2pi#
The general solution Is :
#theta=2kpi+-arc cos((5-sqrt17)/4) ,k inZZ#