Can you Solve [(2)^2 cos^2(x) - √(3) cos(x) = 0] on the interval 0˚< x < 360?

1 Answer
Aug 9, 2018

Please see below.

Explanation:

Your question :As it is.

#color(red)(2^2cos^2(x) - sqrt3 cos(x) = 0 # ,where ,#0^circ < x < 360^circ#

#=>cosx(4cosx-sqrt3)=0#

#=>cosx=0 or(4cosx-sqrt3)=0#

#cosx=0 orcosx=sqrt3/4#

#(i)cosx=0=>x=90^circ ,270^circ#

#(ii)cosx=sqrt3/4=>x=(64.34)^circ,(295.66)^circ#

If the question edited for table-values: #color(red)(2^2 to 2#

#color(red)(2cos^2(x) - sqrt3 cos(x) = 0# , ,where ,#0^circ < x < 360^circ#

#color(blue)(=>cosx(2cosx-sqrt3)=0#

#color(blue)(=>cosx=0 or(2cosx-sqrt3)=0#

#color(blue)(cosx=0 orcosx=sqrt3/2#

#color(blue)((i)cosx=0=>x=90^circ ,270^circ#

#color(blue)((ii)cosx=sqrt3/2=>x=30^circ,330^circ#