How do you solve -4n ^ { 2} + 2n - 5= 04n2+2n5=0?

1 Answer
Aug 9, 2018

n = 1/4+-sqrt(19)/4in=14±194i

Explanation:

We can solve this by completing the square and using the imaginary unit ii, which satisfies i^2=-1i2=1. First multiply by -44 so we can do much of the arithmetic using integers...

0 = -4(-4n^2+2n-5)0=4(4n2+2n5)

color(white)(0) = 16n^2-8n+1+190=16n28n+1+19

color(white)(0) = (4n-1)^2+(sqrt(19))^20=(4n1)2+(19)2

color(white)(0) = (4n-1)^2-(sqrt(19)i)^20=(4n1)2(19i)2

color(white)(0) = ((4n-1)-sqrt(19)i)((4n-1)+sqrt(19)i)0=((4n1)19i)((4n1)+19i)

color(white)(0) = (4n-1-sqrt(19)i)(4n-1+sqrt(19)i)0=(4n119i)(4n1+19i)

Hence:

4n = 1+-sqrt(19)i4n=1±19i

So:

n = 1/4+-sqrt(19)/4in=14±194i