How do you solve -4n ^ { 2} + 2n - 5= 0−4n2+2n−5=0?
1 Answer
Aug 9, 2018
Explanation:
We can solve this by completing the square and using the imaginary unit
0 = -4(-4n^2+2n-5)0=−4(−4n2+2n−5)
color(white)(0) = 16n^2-8n+1+190=16n2−8n+1+19
color(white)(0) = (4n-1)^2+(sqrt(19))^20=(4n−1)2+(√19)2
color(white)(0) = (4n-1)^2-(sqrt(19)i)^20=(4n−1)2−(√19i)2
color(white)(0) = ((4n-1)-sqrt(19)i)((4n-1)+sqrt(19)i)0=((4n−1)−√19i)((4n−1)+√19i)
color(white)(0) = (4n-1-sqrt(19)i)(4n-1+sqrt(19)i)0=(4n−1−√19i)(4n−1+√19i)
Hence:
4n = 1+-sqrt(19)i4n=1±√19i
So:
n = 1/4+-sqrt(19)/4in=14±√194i