How do you solve #-4n ^ { 2} + 2n - 5= 0#?
1 Answer
Aug 9, 2018
Explanation:
We can solve this by completing the square and using the imaginary unit
#0 = -4(-4n^2+2n-5)#
#color(white)(0) = 16n^2-8n+1+19#
#color(white)(0) = (4n-1)^2+(sqrt(19))^2#
#color(white)(0) = (4n-1)^2-(sqrt(19)i)^2#
#color(white)(0) = ((4n-1)-sqrt(19)i)((4n-1)+sqrt(19)i)#
#color(white)(0) = (4n-1-sqrt(19)i)(4n-1+sqrt(19)i)#
Hence:
#4n = 1+-sqrt(19)i#
So:
#n = 1/4+-sqrt(19)/4i#