Solve for x in #|(3+x,5,2),(11-3x,17,16),(7-x,14,13)| = 0#?

1 Answer
Aug 6, 2018

#x=47/31#

Explanation:

Here ,

#|(3+x,5,2),(11-3x,17,16),(7-x,14,13)|=0#

Taking #R_2+3R_1 and R_3+R_1#

#|(3+x,5,2),(11-3x+9+3x,17+15,16+6),(7-x+3+x,14+5,13+2)|=0#

#:.|(3+x,5,2),(20,32,22),(10,19,15)|=0#

Taking #C_2-C_3#

#:.|(3+x,3,2),(20,10,22),(10,4,15)|=0#

Taking #C_1-C_2#

#:.|(x,3,2),(10,10,22),(6,4,15)|=0#

Expanding we get

#x(10*15-4*22)-3(10*15-6*22)+2(10*4-6*10)#=#0#

#:.x(150-88)-3(150-132)+2(40-60)=0#

#:.62x-54-40=0#

#:.62x=94#

#:.x=47/31#