If m is any positive integer then the possible value of #sqrt(m+sqrt(m+sqrt(m+...)))-sqrt(m-sqrt(m-sqrt(m-...)))# is?
1 Answer
Aug 4, 2018
Explanation:
Let:
#u = sqrt(m+sqrt(m+sqrt(m+...)))#
#v = sqrt(m-sqrt(m-sqrt(m-...)))#
Then:
#u^2 = m+u " " => " " u^2-u-m = 0 " " => " " u = 1/2+1/2sqrt(4m+1)#
#v^2 = m-v " " => " " v^2+v-m = 0 " " => " " v = -1/2+1/2sqrt(4m+1)#
(noting that in each case we have to choose the positive root)
So:
#u - v = (1/2+1/2sqrt(4m+1))-(-1/2+1/2sqrt(4m+1))#
#color(white)(u-v) = 1#