How do you find the exact value(s) of K?
Find the exact value(s) of K, if any, so that #k# #vec u# +#3# #vec v# is orthogonal to #vec z# =#<1,1,1>#
Find the exact value(s) of K, if any, so that
1 Answer
According to whether
Explanation:
Two non-zero vectors are orthogonal if and only if their dot product is zero.
Given:
#vec(u) = < u_1, u_2, u_3 >#
#vec(v) = < v_1, v_2, v_3 >#
Then:
#(kvec(u)+3vec(v)) * vec(z)#
#= (k < u_1, u_2, u_3 > + 3 < v_1, v_2, v_3 > ) * < 1, 1, 1>#
#= < k u_1 + 3 v_1, k u_2 + 3 v_2, k u_3 + 3 v_3 > * < 1, 1, 1 >#
#= (k u_1 + 3 v_1) + (k u_2 + 3 v_2) + (k u_3 + 3 v_3)#
#= k(u_1+u_2+u_3)+3(v_1+v_2+v_3)#
If neither
#k = -(3(v_1+v_2+v_3))/(u_1+u_2+u_3)#
If
If