Find all numbers k?
Find all numbers #k# if any so that #|\|# #kvecu# #-vecv# #|\|# = #sqrt(6#
#vec u# = #<2,-1,0>#
#vec v# =#<1,2,-1>#
Find all numbers
1 Answer
Explanation:
Given:
#vec(u) = < 2, -1, 0 >#
#vec(v) = < 1, 2, -1 >#
Then:
#k vec(u) - vec(v) = k < 2, -1, 0 > - < 1, 2, -1 >#
#color(white)(k vec(u) - vec(v)) = < 2k-1, -k-2, 1 >#
So we want to solve:
#6 = abs(abs(k vec(u) - vec(v)))^2#
#color(white)(6) = (color(blue)(2k-1))^2+(color(blue)(-k-2))^2+(color(blue)(1))^2#
#color(white)(6) = 4k^2-color(red)(cancel(color(black)(4k)))+1+k^2+color(red)(cancel(color(black)(4k)))+4+1#
#color(white)(6) = 5k^2+6#
Hence:
#k = 0#
Another way...
Actually we could have noticed a couple of things and reasoned this in a different way...
#abs(abs(vec(v))) = abs(abs(< 1, 2, -1 >))#
#color(white)(abs(abs(vec(v)))) = sqrt((color(blue)(1))^2+(color(blue)(2))^2+(color(blue)(-1))^2)#
#color(white)(abs(abs(vec(v)))) = sqrt(1+4+1)#
#color(white)(abs(abs(vec(v)))) = sqrt(6)#
#vec(u) * vec(v) = < 2, -1, 0 > * < 1, 2, -1 >#
#color(white)(vec(u) * vec(v)) = (color(blue)(2))(color(blue)(1))+(color(blue)(-1))(color(blue)(2))+(color(blue)(0))(color(blue)(-1)) = 2-2+0 = 0#
So
So adding any non-zero multiple of
Hence the only solution is